High Voltage Cathode Materials for Lithium-Ion Batteries

Hristina Vasilchina1, Galina Ivanova2, Boris Velev1, Atanaska Trifonova1, Anton Momchilov1 and Branimir Banov1,3*

1Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 10, 1113 Sofia, Bulgaria, e-mail: bbanov@dir.bg

2National Military University “V. Levski”, 76, “Bulgaria” Blvd, 5000 V. Tarnovo, Bulgaria, e-mail: galina_h_ivanova@abv.bg

3European Polytechnical University, 23, “St. St. Kild i Metodi” St., 2300 Pernik, Bulgaria

Abstract. Doped lithium cobaltates LiCo\textsubscript{1−y}M\textsubscript{y}O\textsubscript{2} (M = Mn, Ni, y = 0.1, 0.3, 0.5) have been prepared by low temperature solid-state reaction. The structure of the samples was characterized by X-ray diffraction. The specific surface area of the materials was examined by means of Brunauer–Emmet–Teller method. The synthesized powders were found to have rhombohedral structure, except for LiCo\textsubscript{0.5}Mn\textsubscript{0.5}O\textsubscript{2}, which crystallizes with cubic spinel-like structure (space group Fd3m). The electrochemical performances of the compounds were studied by galvanostatic cell cycling in the high-voltage range between 3.0 and 4.8 V vs Li/Li+ electrode. It was shown that the type and the amount of the doping element greatly affect the structure, electrochemistry and cycle life characteristics of the investigated materials. LiCo\textsubscript{0.9}Mn\textsubscript{0.1}O\textsubscript{2} has shown better cycling results compared to all other compounds.

Keywords: lithium-ion battery, doped LiCoO\textsubscript{2}, high voltage materials, solid-state synthesis.

*Corresponding author.
1. Introduction

Lithium cobalt oxide (LiCoO$_2$) is the most commonly used positive electrode material in commercial lithium-ion batteries due to its high energy density, high working voltage and good thermal and structural stability during cycling [1, 2]. The theoretical capacity of LiCoO$_2$ is 274 mA.h.g$^{-1}$, however its practical capacity attainable is only about 140 mA.h.g$^{-1}$ when cycled in the voltage range of 3.0–4.3 V. By increasing the cut-off voltage, the energy density of the cell can be increased by \sim15%. However, the cyclability of Li$_{1-x}$CoO$_2$ rapidly deteriorates for $x > 0.5$ (i.e. above 4.3 V) due to crystallographic phase transitions and the associated unit cell volume changes [3]. Moreover, the formed Co$^{4+}$ ions with their strong oxidative character lead to dissolution of the electrolyte on the particle surface, resulting in considerable gas release, which is responsible for the capacity fade and mechanical failure of the cells [4, 5].

Doping with metal ions is an effective approach, which has been applied to stabilize the layered structure of the cathode material allowing good reversibility at high voltages and increasing the capacity of the system LiCo$_{1-y}$M$_y$O$_2$ (M = metal). Theoretical studies indicate that transition metal doping of LiCoO$_2$ leads to an increased capacity, while non-transition metal doping can increase the voltage at the expense of the capacity [6, 7]. Different metal substituents like Fe, Mn, Ni, Al, Mg at the Co-site in LiCoO$_2$ have been studied with respect to possible improvement in the electrochemical performance of the material [8–12].

In the present study, we report on the synthesis of doped lithium cobaltates LiCo$_{1-y}$M$_y$O$_2$ (M = Mn, Ni). The compounds have been obtained by solid-state method at relatively low temperatures with respect to the classic solid-state reactions using also alternative precursors and optimising the synthesis conditions. The materials were subjected to structural and electrochemical characterization in order to study their potential use as high-voltage cathode materials in lithium-ion batteries.

2. Experimental

The phases LiCo$_{1-y}$M$_y$O$_2$ (M = Mn, Ni, y = 0.1, 0.3, 0.5) were synthesized by solid-state method using nitrate precursors: LiNO$_3$, Co(NO$_3$)$_2$.6H$_2$O,
Mn(NO$_3$)$_2$ and Ni(NO$_3$)$_2$.6H$_2$O (Merck). The stoichiometric amounts of the precursors were mechanically homogenized in a ball mill for 1 h. Ten per cent excess of LiNO$_3$ was added to the mixtures in order to avoid the loss of Li as Li$_2$O. The obtained powders were initially heat treated in an oven at 450°C for 24 h following by additional grounding for 2 h in a ball mill. Further the samples were annealed in air at 650°C for 12 h. The mixture was cooled, mixed thoroughly and subjected to physical and electrochemical characterizations. Powder X-ray Diffraction (XRD) patterns of the phases were obtained using a Philips APD-15 diffractometer with CuKα radiation, internal Si standard and computer data management. The lattice parameters were calculated using the dependence between the Miller indices (hkl) and d-spacing, with the program UNIT CELL-TJB Holland & SAT Redfern method (1995) applying the least-squares method. The Specific Surface Area (SSA) of the samples was determined by Brunauer–Emmet–Teller (B.E.T.) method by means of BET areameter Strohlein (Germany). The electrochemical characterizations were carried out using a three-electrode metal cell fully modelling a coin cell 2032 with the advantage of lithium reference electrode. The electrolyte was consisted of a solution of 1M LiPF$_6$ + 0.2M LiClO$_4$ in EC (ethylene carbonate):DMC (dimethyl carbonate):DEC (diethyl carbonate) in 1:1:1 volume ratio. The composite test electrode materials were a mixture of the compounds studied with Teflonized Acetylene Black (TAB-2) at 8:2 ratio by weight. The prepared mix was coated onto an aluminium foil that served as a current collector by applying 10 t.cm$^{-2}$ pressure using a hydraulic press. The cells were assembled in an argon-filled glove box and were subjected to galvanostatic charge-discharge cycling tests. The electrochemical tests were performed on a computer controlled multi-channel battery cycling device at a current rate of C/5 in the voltage range of 3.0–4.8 V at room temperature.

3. Results and discussion

3.1. Structural characterization

3.1.1. LiCo$_{1-y}$Mn$_y$O$_2$ cathode materials. Figure 1 shows the X-ray diffraction patterns of LiCo$_{1-y}$Mn$_y$O$_2$ ($y = 0.1, 0.3, 0.5$) samples synthesized by solid-state method and calcined at 650°C. It can be seen that all compositions do not form a single phase. The existence of secondary phases, which can be indexed
Fig. 1. XRD patterns of: (a) LiCo_{0.9}Mn_{0.1}O₂; (b) LiCo_{0.7}Mn_{0.3}O₂; (c) LiCo_{0.5}Mn_{0.5}O₂ powders prepared by low temperature solid-state method at 650°C. Secondary phases in the powders are indexed to Co₃O₄ (◦) and MnO₂ (+).

To Co₃O₄ and MnO₂ is observed. The intensity of the peak at 2θ = 36.8 degrees corresponding to Co₃O₄ phase increases considerably with increasing the Mn content to y = 0.3, Fig. 1(b). In the XRD patterns of LiCo_{0.9}Mn_{0.1}O₂ and LiCo_{0.7}Mn_{0.3}O₂, Fig. 1(a, b), it can be observed that the fingerprint peaks, viz. (003), 101, 006, 102, 104, 108 and 110 are clearly identifiable thereby suggesting the existence of hexagonal lattice structure of the α-NaFeO₂ type (R-3m space group). With increasing the Mn amount to y = 0.5 the crystal structure is changed and the X-ray patterns of LiCo_{0.5}Mn_{0.5}O₂ can be indexed to a cubic unit cell (fcc) of the spinel-type structure (space group Fd3m). These
results confirm the reports available in the literature about Mn doped lithium cobaltates [10, 13].

The unit cell parameters of all LiCo$_{1-y}$Mn$_y$O$_2$ compositions calculated from the XRD patterns are listed in Table 1. The results indicate that the hexagonal-close packed lattice is maintained only for $y = 0.1$ and $y = 0.3$. The values of the lattice parameters for these samples are slightly larger than those reported for pure LiCoO$_2$ [14–18]. With increasing content of the Mn-dopant, both the metal-metal intrasheet distance (a) and the metal-metal interlayer distance (c) increase. The substitution of Mn for Co leads to expansion of the unit cell parameters and overall cell volume, which is in tune with the ionic radii of the elements (Co$^{3+} = 0.545$ Å, Mn$^{3+} = 0.67$ Å) [19]. As can be seen in Table 1, the c/a ratio of 4.99 indicates a well-defined layered structure and an ordered distribution of lithium and transition-metal ions in the lattice. The ratio of intensities of the XRD lines $I_{(003)}/I_{(104)}$ is considered as an indicator of the ordering of the lithium and transition metal ions [20]: the larger the ratio, the better expressed the layered structure.

<table>
<thead>
<tr>
<th>Material</th>
<th>Structural data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sp. group</td>
</tr>
<tr>
<td>LiCo${0.9}$Mn${0.1}$O$_2$</td>
<td>R3m</td>
</tr>
<tr>
<td>LiCo${0.7}$Mn${0.3}$O$_2$</td>
<td>R3m</td>
</tr>
<tr>
<td>LiCo${0.5}$Mn${0.5}$O$_2$</td>
<td>Fd3m</td>
</tr>
</tbody>
</table>

The $I_{(003)}/I_{(104)}$ values are more than unity for $y = 0.1$ and $y = 0.3$ (Table 1) suggesting the formation of ordered layered structure. The well defined doublets (006)/(102) and (108)/(110) observed in XRD patterns of LiCo$_{0.9}$Mn$_{0.1}$O$_2$ support this conclusion. On the other hand, the (108) peak of the (108)/(110) doublet is higher in the pattern of LiCo$_{0.7}$Mn$_{0.3}$O$_2$, Fig. 1(b), which could be discerned as an indication of possible inhomogeneous distribution of Mn and Co ions in the structure. Based on the structural data it can be expected that LiCo$_{0.9}$Mn$_{0.1}$O$_2$ will exhibit better electrochemical behaviour. The average crystallite size L of the doped materials was calculated from X-ray data applying Debye–Scherer equation [21]. As can be seen from
High Voltage Cathode Materials for Lithium-Ion Batteries

Table 1. The mean crystallite size of the LiCo$_{1-y}$Mn$_y$O$_2$ materials decreased with increasing the amount of the manganese component. The same tendency was observed for the SSA of the compounds. The largest SSA was obtained for the sample LiCo$_{0.9}$Mn$_{0.1}$O$_2$ (3.48 m2.g$^{-1}$), while the materials with $y = 0.3$ and $y = 0.5$ showed SSA of 1.90 m2.g$^{-1}$ and 1.78 m2.g$^{-1}$, respectively.

3.1.2. LiCo$_{1-y}$Ni$_y$O$_2$ cathode materials. The XRD patterns of the synthesized LiCo$_{1-y}$Ni$_y$O$_2$ ($y = 0.1, 0.3, 0.5$) materials are shown in Fig. 2. All diffraction peaks could be indexed based on a hexagonal α-NaFeO$_2$ structure with a space group of R-3m. The patterns appear to be similar to those reported for pure layered LiCoO$_2$ [22]. There is a clear splitting of the (006)/(102) and (108)/(110) doublet peaks, which indicate uniform ordering of lithium and transition-metal ions in the structure [13].

Table 2. Structural data of the compounds LiCo$_{1-y}$Ni$_y$O$_2$ ($y = 0.1, 0.3, 0.5$)

<table>
<thead>
<tr>
<th>Material</th>
<th>a/Å</th>
<th>c/Å</th>
<th>c/a</th>
<th>U. cell vol. Å3</th>
<th>$I_{(003)}/I_{(104)}$</th>
<th>Crt. size nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCo${0.5}$Ni${0.5}$O$_2$</td>
<td>2.8139</td>
<td>14.0487</td>
<td>4.99</td>
<td>96.2765</td>
<td>1.11</td>
<td>31</td>
</tr>
<tr>
<td>LiCo${0.7}$Ni${0.3}$O$_2$</td>
<td>2.8133</td>
<td>14.0404</td>
<td>4.99</td>
<td>96.2338</td>
<td>1.12</td>
<td>30</td>
</tr>
<tr>
<td>LiCo${0.9}$Ni${0.1}$O$_2$</td>
<td>2.8128</td>
<td>14.0296</td>
<td>4.99</td>
<td>96.1280</td>
<td>1.35</td>
<td>27</td>
</tr>
</tbody>
</table>

All peaks are sharp and well defined suggesting that materials are well crystallized. In all spectra the presence of some extra peaks due to impurities of NiO are observed. The hexagonal cell parameters of the doped compounds, calculated from the XRD spectra, are given in Table 2. The results show that the hexagonal-close-packed lattice is preserved for all samples. With increasing the amount of the doping element a slight increase of the lattice parameters (a) and (c) can be seen, since the ionic radius of Ni$^{3+}$ (0.69 Å) is larger than that of Co$^{3+}$ (0.54 Å). The intensity ratio $I_{(003)}/I_{(104)}$ exceeds unity, which is a further evidence of the cation ordering in the obtained structures. This is also confirmed by the values of the c/a ratio, which are higher than 4.90, corroborating the layered structure of the materials. As seen in Table 2, the $I_{(003)}/I_{(104)}$ ratio decreases with increasing the Ni content in LiCo$_{1-y}$Ni$_y$O$_2$ samples, which indicates that higher Ni concentrations could result in probable cation mixing in the structure. In contrast with the Mn doped compounds the mean crystallite size of LiCo$_{1-y}$Ni$_y$O$_2$ powders increases with increasing the Ni
Fig. 2. XRD patterns of: a) LiCo$_{0.9}$Ni$_{0.1}$O$_2$; b) LiCo$_{0.7}$Ni$_{0.3}$O$_2$ and c) LiCo$_{0.5}$Ni$_{0.5}$O$_2$ powders prepared by low temperature solid-state method at 650°C. The impurity peaks are indicated as NiO (∆).

content. Subsequently a slight increase of the measured SSA can be observed – in the order LiCo$_{0.9}$Ni$_{0.1}$O$_2$ (1.72 m2.g$^{-1}$) < LiCo$_{0.7}$Ni$_{0.3}$O$_2$ (1.81 m2.g$^{-1}$) < LiCo$_{0.5}$Ni$_{0.5}$O$_2$ (1.88 m2.g$^{-1}$).

3.2. Electrochemical characterization

The electrochemical performance of the prepared cells was evaluated galvanostatically by cycling the cells from 3.0 to 4.8 V. The cells exhibited an open circuit voltage of around 3.0 V (vs Li metal). In Figure 3 the discharge curves of Li/LiCo$_{1−x}$Mn$_x$O$_2$ and Li/LiCo$_{1−y}$Ni$_y$O$_2$ cells recorded at C/5 rate are presented. As the manganese doping content increased from x = 0.1 to 0.5 a slight decrease of the discharge voltage is observed, Fig. 3(a), which is in accordance with the theoretic calculations of Ceder et al. and Venkatraman et al. [4, 7, 23], concerning the effect of Co substitution (partly or completely) with 3d metal in Li$_{1−x}$(Co$_{1−y}$M$_y$)O$_2$ at given x.

All doped materials exhibit a potential slightly lower than for the pure LiCoO$_2$ phase, which could be attributed to the different morphology and structure changes during cycling. For the Ni doped compounds, the increase of
Fig. 3. Discharge curves of the compounds: (a) LiCo$_{1-y}$Mn$_y$O$_2$ ($y = 0.1, 0.3, 0.5$) and (b) LiCo$_{1-y}$Ni$_y$O$_2$ ($y = 0.1, 0.3, 0.5$) in the voltage window 3.0–4.8 V.

the Ni mol part does not change the discharge plateau, Fig. 3(b), which is due to the fact that Co and Ni can be substituted mutually without changing the LiCoO$_2$ structure.

Besides the discharge plateau at 3.8 V a second discharge plateau at about 4.4 V in both doped materials, LiCo$_{1-y}$Mn$_y$O$_2$ and LiCo$_{1-y}$Ni$_y$O$_2$, can be observed, which is attributed to second lithiation process. The dependence of the specific capacity on the number of the cycles is presented in Fig. 4. It can be seen that LiCo$_{0.9}$Mn$_{0.1}$O$_2$ shows comparatively high initial capacity of 140 mAh.g$^{-1}$ and very good cycling stability, Fig. 4(a), which means that doping with 10 mol% Mn stabilizes the structure of the lithium cobaltate. However the discharge capacities of the LiCo$_{1-y}$Mn$_y$O$_2$ ($y = 0.1, 0.3, 0.5$) materials decreased with increasing the Mn content. The results of the electrochemical testing of the compound consisted of equal amounts of transition elements (LiCo$_{0.5}$Mn$_{0.5}$O$_2$) show that it possesses poor electrochemical activity, which may be due to the structural change of the material. In contrast to the Mn doped compounds, in case of LiCo$_{1-y}$Ni$_y$O$_2$ the increase of the Ni content leads to a considerable increase of the initial capacity of the material, reaching 170 mAh.g$^{-1}$ for LiCo$_{0.5}$Ni$_{0.5}$O$_2$, Fig. 4(b). Similar increase of the starting capacity when doping with Ni is also reported by Li et al. [25]. However, at the same
time the stability during cycling deteriorates, which could be due to a kinetic problem – it is known that some of the LiCo$_{1-y}$Ni$_y$O$_2$ phases are poor electron conductors.

Another possible explanation could be the occupation of Li sites in the structure by Ni ions, which hinders the lithiation-delithiation process. The presence of cation mixing can also be confirmed by the X-ray patterns. The increased Ni content leads to a decrease of the intensity ratio of the diffraction lines (003) and (104), reflecting an increased Ni content at the Li sites, which correspondingly results in deteriorated cycling stability of all Ni doped compounds. From all materials under investigation LiCo$_{0.9}$Mn$_{0.1}$O$_2$ shows the best electrochemical behaviour due to its structural and morphological properties. Its intensity ratio $I_{(003)}/I_{(104)}$ of the material is 1.49, i.e. the highest value in comparison to the other doped materials. $I_{(003)}/I_{(104)}$ is higher than unity suggesting the formation of well ordered layered structure. LiCo$_{0.9}$Mn$_{0.1}$O$_2$ is also characterized with the largest SSA, which considerably influenced its electrochemical performance.
4. Conclusions

Doped lithium cobaltates LiCo$_{1-y}$M$_{y}$O$_2$ ($=\text{Mn, Ni}; y = 0.1, 0.3, 0.5$) were synthesized by solid-state method from nitrate precursors. The effect of Mn and Ni doping on the structural and electrochemical properties of the materials was investigated. XRD analysis shows that the layered structure of lithium cobaltate is preserved up to doping with 50 mol\% Ni and about 30 mol\% of Mn. We have demonstrated that LiCo$_{0.9}$Mn$_{0.1}$O$_2$ synthesized in this way is a promising cathode material for use in lithium-ion batteries, delivering capacities of 130 mAh.g$^{-1}$ at a C/5 rate when cycled in the high voltage range (4.8 V). Moreover, it possesses very good cycling stability in the extended galvanostatic cycling studies (50 cycles). Doping with 10, 30 and 50 mol\% Ni results in an increased initial capacity (by 20\%), but also leads to deterioration with cycling.

References

Received September 10, 2013